Assessing CO2 Emissions from Deforestation and Fires in Bolivia during 2010-2023
DOI:
https://doi.org/10.35319/lajed.202544595Keywords:
Deforestation, fires, carbon emissions, BoliviaAbstract
This report estimates annual CO₂ emissions from deforestation and fires in Bolivia from 2010 to 2023, considering both emissions and absorptions resulting from land clearing, land use change, fires, and forest regeneration. Using high-resolution annual land cover maps from MapBiomas Bolivia (1985–2023) and a global biomass density map, we track carbon pool changes at a 30×30 m resolution. We developed a bookkeeping model to monitor carbon storage across 1.2 billion land cover pixels nationwide. Fortunately, 93% of these pixels showed no significant forest change, allowing us to focus on the 80 million pixels that experienced changes during the analysis period. These pixels were categorized into 1,278 classes of change based on the year, original land cover, resulting land cover, and forest type. To estimate emissions from forest degradation due to fires, we used the Global Fire Emissions Database and subtracted emissions from deforestation within burned areas to prevent double counting. Our results indicate that CO₂ emissions from deforestation and forest degradation due to fires in Bolivia frequently exceed 200 million tCO₂ per year—70 million tCO₂ from deforestation and 126 million tCO₂ from degradation on average—making Bolivia a significant contributor to global warming, with per capita emissions among the highest in the world. Alarmingly, an increasing share of these emissions results from forest burning with no apparent productive purpose.
Downloads
References
Andersen, L., Argandoña, F., Balmford, B., Choque Sunagua, S., Groom, B., Inkinen, V., . . . Weinhold, D. (2023). Why is it so difficult to measure deforestation? https://sdsnbolivia.org/en/why-is-it-so-difficult-to-measure-deforestation/
Andersen, L., Argandoña, F., Calderón, D., Choque, S., Muñoz, Á., Olmos, C., & Miranda, S. (2025). Valoración económica de los servicios ecosistémicos provistos por las áreas naturales, Áreas Protegidas y los Territorios Indígenas en Bolivia. La Paz: SDSN Bolivia.
Andersen, L., Doyle, A.S., del Granado, S., Ledezma, J., Medinaceli, A., & Weinhold, D. (2016). Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model. PLoS ONE, 11(3). https://doi.org/https://doi.org/10.1371/journal.pone.0151241
Bolivia, Autoridad Plurinacional de la Madre Tierra, APMT (2020). Tercera Comunicación Nacional del Estado Plurinacional de Bolivia. Ministerio de Medio Ambiente y Agua.
Bolivia, Autoridad Plurinacional de la Madre Tierra, APMT (2024). Primer Informe Bienal de Trasparencia 2020-2022 del Estado Plurinacional de Bolivia. La Paz: Autoridad Plurinacional de la Madre Tierra.
Berenguer, E., Ferreira, J., Oliveira, L., Gardner, T.A., Aragão, L.E., De Camargo, P. B., ... Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob Change Biol, 20(12), 3713-3726. https://doi.org/https://doi.org/10.1111/gcb.12627
Bertschi, I., Yokelson, R.J., Ward, D.E., Babbitt, R.E., Susott, R.A., Goode, J.G., & Min Hao, W. (2003, February 15). Trace gas and particle emissions from fires in large diameter and belowground biomass fuels. Journal of Geophysical Research: Atmospheres, 108(D13). https://doi.org/https://doi.org/10.1029/2002JD002100
Binte Shahid, S., Lacey, F.G., Wiedinmeyer, C., Yokelson, R.J., & Barsanti, K.C. (2024). NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0. Geoscientific Model Development, 17(21), 7679-7711. https://doi.org/10.5194/gmd-17-7679-2024
Cambridge University Press (n.d.). Deforestation. Cambridge Dictionary. https://dictionary.cambridge.org/dictionary/english/deforestation
Copernicus Land Monitoring Service (2023, Julio 4). Burnt Area 2019-present (raster 300 m), global, monthly - version 3.1. Copernicus Land Monitoring Service (CLMS). https://land.copernicus.eu/en/products/vegetation/burnt-area-v3-1-monthly-300m
FAO (2018). Global Soil Organic Carbon map (GSOCmap). Rome: FAO.
FAO (2023). Terms and definitions FRA 2025” Forest Resources Assessment. Working Paper N° 194. Rome: Food and Agriculture Organization of the United Nations. https://www.fao.org/3/cc4691en/cc4691en.pdf
FAO, & ITPS (2020). Global Soil Organic Carbon Map V1.5: Technical Report. Rome: Food and Agriculture Organization of the United Nations.
Friedlingstein, P., O’Sullivan, M., Jones, M., Andrew, R., & Bakker, D. (2023). Global Carbon Budget 2023. Earth System Science Data, 15(12), 5301-5369. https://doi.org/https://doi.org/10.5194/essd-15-5301-2023
Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R.A., Ciais, P., & Obersteiner, M. (2020). Historical CO₂ emissions from land use and land cover change and their uncertainty. Biogeosciences, 17(15), 4075-4101. https://doi.org/https://doi.org/10.5194/bg-17-4075-2020
Giglio, L., Justice, C., Boschetti, L., & Roy, D. (2019). MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V061. https://doi.org/https://doi.org/10.5067/MODIS/MCD64A1.061
Global Carbon Budget GCB (2025). The Global Carbon Budget: FAQs. https://globalcarbonbudget.org/faqs/
Global Carbon Atlas (2023). https://globalcarbonatlas.org/
Grassi, G., House, J., Kurz, W., Cescatti, A., & Houghton, R. (2018). Reconciling global model estimates and country reporting of anthropogenic forest CO₂ sinks. Nature Climate Change, 8(10), 914-920.
Hansis, E., Davis, S., & Pong, J. (2015). Relevance of methodological choices for accounting of land use change carbon fluxes. Global Biogeochemical Cycles, 29(8), 1230-1246. https://doi.org/doi:10.1002/2014GB004997
Houghton, R.A., & Nassikas, A.A. (2017). Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochem Cycles, 31(3), 456-472. https://doi.org/https://doi.org/10.1002/2016GB005546
Houghton, R., & Castanho, A. (2023). Annual emissions of carbon from land use, land use change, and forestry from 1850 to 2020. Earth System Science Data, 15(5), 2025-2054. https://doi.org/https://doi.org/10.5194/essd-15-2025-2023
Houghton, R., & Hackler, J. (2001). Emissions of carbon from forestry and land-use change in tropical Asia. Global Change Biology, 5(4), 481-492. https://doi.org/10.1046/j.1365-2486.1999.00244.x
Houghton, R., Hobbie, J., Melillo, J., Moore, B., Peterson, B., Shaver, G., & Woodwell, G. (1983). Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO₂ to the Atmosphere. Ecological Monographs, 53(3), 235-262. https://doi.org/10.2307/1942531
Ibisch, P., & Merida, G. (2003). Biodiversidad: la riqueza de Bolivia. Estado de conocimiento y conservación. Santa Cruz de la Sierra: FAN.
IPCC (2005). IPCC Good Practice Guidance for LULUCF. Suiza: IPCC.
IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In S. Eggelston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (eds.), National Greenhouse Gas Inventories Programme, PCC/IGES.
IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Switzerland: IPCC.
IPCC (2024). Report of the IPCC Expert Meeting on Reconciling Anthropogenic Land Use Emissions. Ispra: IGES. https://www.ipcc-nggip.iges.or.jp/public/mtdocs/pdfiles/2407_EM_Land_Report.pdf
Lanly, J. (2003). Los factores de la deforestación y la degradación de los bosques. https://www.fao.org/4/xii/ms12a-s.htm
Maillard, O. (2023). Post-Fire Natural Regeneration Trends in Bolivia: 2001-2021. Fire, 6(1), 18. https://doi.org/10.3390/fire6010018
MapBiomas Bolivia (2024). ATBD Step by Step. Get to Know the Steps of the Mapbiomas Bolivia Methodology. https://bolivia.mapbiomas.org/en/atbd-entienda-cada-etapa/
MapBiomas Bolivia (2024). Colección 2 de la serie anual de mapas de cobertura y uso del suelo de Bolivia. https://bolivia.mapbiomas.org/
MMAyA (2022). Memoria técnica: mapa de bosque 2022. Viceministerio de Medio Ambiente, Biodiversidad, Cambios Climáticos y de Gestión y Desarrollo Forestal. https://datos.siarh.gob.bo/biblioteca/686
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., ... & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609
Phillips, O., Lewis, S., Baker, T., Chao, K., & Higuchi, N. (2008). The changing Amazon forest. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363 (1498), 1819-1827. https://doi.org/10.1098/rstb.2007.0033
Poulter, B., Canadell, J., Hayes, D., & Thompson, R. (2022). Balancing Greenhouse Gas Budgets: Accounting for Natural and Anthropogenic Flows of CO₂ and other Trace Gases. In B. Poulter et al. (eds.), Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods (pp. 59-85). Amsterdam: Elsevier.
Qin, Z., Zhu, Y., Canadell, J., Chen, M., Li, T., Mishra, U., & Yuan, W. (2024). Global spatially explicit carbon emissions from land use change over the past six decades (1961-2020). One Earth, 7(5), 835-847. https://doi.org/https://doi.org/10.1016/j.oneear.2024.04.002
RAISG (2024). Manual General MapBiomas. https://bolivia.mapbiomas.org/wpcontent/uploads/sites/15/2024/07/ATBD_General_MapBiomas_Bolivia_-_Coleccion_2.pdf
Rowell, R.M., & LeVan Green, S.L. (2005). Thermal Properties, Combustion, and Fire Retardancy of Wood. In R.M. Rowell & S.L. LeVan Green (eds.), Handbook of wood chemistry and wood composites (pp. 121-138). Boca Raton, Florida, United States: CRC Press. https://doi.org/http://dx.doi.org/10.1201/b12487
Santoro, M., & Cartus, O. (2024). ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2015, 2016, 2017, 2018, 2019, 2020 and 2021, v5.01. NERC EDS Centre for Environmental Data Analysis. https://doi.org/doi:10.5285/bf535053562141c6bb7ad831f5998d77
Sims, M., Gibbs, D., & Harris, N. (2024, April 4). Greenhouse Gas Fluxes from Forests. Global Forest Review. https://gfr.wri.org/biodiversity-ecological-services-indicators/greenhouse-gas-fluxes-forests
Van Wees, D., van der Werf, G.R., Randerson, J., Rogers, B.M., Chen, Y., Veraverbeke, S., ... Morton, D.C. (2022). Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED). Geoscientific Model Development, 15(22), 8411-8437. https://doi.org/10.5194/gmd-15-8411-2022
Verma, P., Singh, R., Singh, P., & Raghubanshi, A. (2020). Urban Ecology. Emerging Patterns and Social-Ecological Systems. India: Elsevier. https://doi.org/10.1016/C2018-0-05562-0
Viglione, G. (2023). Q&A: How scientists tackle the challenges of estimating wildfire CO₂ emissions. Carbon Brief. https://www.carbonbrief.org/qa-how-scientists-tackle-the-challenges-of-estimating-wildfire-co2-emissions/
Viglione, G. (2023). Wildfires. Q&A: How scientists tackle the challenges of estimating wildfire CO2 emissions: https://www.carbonbrief.org/qa-how-scientists-tackle-the-challenges-of-estimating-wildfire-co2-emissions/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Latin American Journal of Economic Development

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
