Calibration and Validation of the APEX Model for three Potato Cultivars Produced in the Bolivian Andean Region
DOI:
https://doi.org/10.35319/lajed.20210464Keywords:
Potato production, crop simulation models, APEX, yield, Andean regionAbstract
The purpose of this study is to calibrate and validate the APEX simulation model for the study of three potato genotypes highly important for the economy and food security of the Bolivian Andean region. An automatic sensitivity analysis was performed, and the model calibration and validation were based on secondary data from studies carried out in Toralapa (Cochabamba) and Patacamaya (La Paz) communities. In addition, the potential of the model for decision-making towards sustainable production of potato was evaluated. The results obtained indicate that the model simulates adequately the growth of the three cultivars under the Andean agroecological conditions. Consequently, it can be used to study the impact on potato production of productive projects, technologies, management practices, and climate change, and thus, design strategies to improve potato productivity.
Downloads
References
Asseng, S., Zhu, Y., Basso, B., Wilson, T. y Cammarano, D. (2014). Simulation Modeling: Applications in Cropping Systems. Encyclopedia of Agriculture and Food Systems, 5, 102-112. https://doi.org/10.1016/B978-0-444-52512-3.00233-3
Banco de Desarrollo Productivo, BDP (2019). Mapa de complejidades. Banco de Desarrollo Productivo. https://complejidades.bdp.com.bo/mapa
Canqui, F. y Morales, E. (2009). Conocimiento local en el cultivo de la papa. Fundación PROIMPA.
Choruma, D., Balkovic, J. y Odume, O. N. (2019). Calibration and validation of the EPIC model for maize production in the Eastern Cape, South Africa. Agronomy, 9(9), 1-16. https://doi.org/10.3390/agronomy9090494
CIDES-UMSA (2016). Desarrollo rural en Bolivia: visiones sociales e institucionales. Umbrales, 30, p. 368).
Condori, B., Casa, A. de, Soratto, P., Olarte, S., Mompies, J., Clavijo, N. L., Vilaró, F. y García, C. (2016). Modelación de la papa en Latinoamérica: estado del arte y base de datos para parametrización. Publications Office of the European Union. https://doi. org/10.2788/11877
Condori, B., Hijmans, R. J., Quiroz, R. y Ledent, J. F. (2010). Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling. Field Crops Research, 119(1), 135-144. https://doi.org/10.1016/j.fcr.2010.07.003
---------- (2014). Managing potato biodiversity to cope with frost risk in the high Andes: A modeling perspective. PLoS ONE, 9(1), 1-11. https://doi.org/10.1371/journal. pone.0081510
Condori, B., Mamani, P., Botello, R., Patiño, F., Devaux, A. y Ledent, J. F. (2008). Agrophysiological characterisation and parametrisation of Andean tubers: Potato (Solanum sp.), oca (Oxalis tuberosa), isaño (Tropaeolum tuberosum) and papalisa (Ullucus tuberosus). European Journal of Agronomy, 28(4), 526-540. https://doi.org/10.1016/j.eja.2007.12.002
Condori, B., Quiroz, R., Barreda, C., Gavilan, C., Guerrero, J. y Osorio, J. (2017). Solanum: A potato production simulation model. International Potato Center. https://doi.org/10.21223/P3/E71OS6
Condori Mamani, J. (2005). Validación del modelo de simulación Lintul para cuantificar el rendimiento potencial de diferentes especies de papa en el altiplano central-La Paz. Universidad Mayor de San Andrés.
Fundación Tierra (2019). Efectos de la importación de alimentos sobre la producción campesina-indígena. Fundación Tierra.
Gassman, P. W., Williams, J. R., Wang, X., Saleh, A., Osei, E., Hauck, L. M., Izaurralde, R. C. y Flowers, J. D. (2010). The Agricultural Policy/Environmental eXtender (APEX) model: An emerging tool for landscape and watershed environmental analyses. Transactions of the ASABE, 53(3), 711-740.
Gassman, Philip W., Williams, J. R., Benson, V. W., Izaurralde, R. C., Hauck, L. M., Jones, C. A., Atwood, J. D., Kiniry, J. R., & Flowers, J. D. (2004). Historical development and applications of the EPIC and APEX models. ASAE Annual International Meeting 2004, 2033–2064. https://doi.org/10.13031/2013.17074
Insituto Nacional de Estadística, INE (2017). Encuesta Nacional Agropecuaria 2015. La Paz, Bolivia.
Kephe, P. N., Ayisi, K. K. y Petja, B. M. (2021). Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa. Agriculture and Food Security, 10(1), 1-24. https://doi.org/10.1186/s40066-020-00283-5
Keulen, V. (2013). Simulation Models as Tools for Crop Management. In P. Chirstou, R. Savin, B. A. Costa-Pierce, I. Miztal y C. Bruce A. Whitelaw (eds.), Sustainable Food Production. Springer. https://doi.org/10.1007/978-1-4614-5797-8
Le, K. N., Jeong, J., Reyes, M. R., Jha, M. K., Gassman, P. W., Doro, L., Hok, L. y Boulakia, (2018). Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia. Agricultural Systems, 166 (July), 90-100. https://doi.org/10.1016/j.agsy.2018.08.003
Luo, Y. y Wang, H. (2019). Modeling the impacts of agricultural management strategies on crop yields and sediment yields using APEX in Guizhou Plateau, southwest China. Agricultural Water Management, 216 (April 2018), 325-338. https://doi.org/10.1016/j.agwat.2019.01.018
Luque Salcedo, M. (2018). Caracterización de parámetros vulnerables de 50 variedades de papa nativa (Solanum sp.) en dos comunidades del Municipio de Batallas. Universidad Mayor de San Andrés.
Prudencio, J. (2012). Seguridad alimentaria: Promoviendo un debate necesario. COSUDE.
---------- (2017). El sistema agroalimentario en Bolivia y su impacto en la alimentación y nutrición (Análisis de situación 2005-2015). https://julioprudencio.com/index.php/2017/09/08/el-sistema-agroalimentario-y-su-impacto-en-la-alimentacion-y-nutricion-2017/
Rinaldi, M. y de Luca, D. (2012). Applications of EPIC model to assess climate impact on sorghum in southern Italy. Italian Journal of Agronomy, 7(1), 74-85. https://doi.org/10.4081/ija.2012.e12
Rojas Mamani, P. y Ledent-Francois, J. (2014). Efecto de la sequía en la morfologia, crecimiento y productividad de genotipos de papa (solanum tuberosum l.) en Bolivia. Revista latinoamericana de la papa, 18(1), 25-76.
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H. y Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268-3273. https://doi.org/10.1073/pnas.1222463110
Saavedra, A. K., Delgado, J. A., Botello, R., Mamani, P., & Alwang, J. (2014). A new n index to assess nitrogen dynamics in potato (Solanum tuberosum L.) production systems of Bolivia. Agrociencia, 48(7), 667-678.
Saseendran, S. A., Ahuja, L. R., Nielsen, D. C., Trout, T. J. y Ma, L. (2008). Use of crop simulation models to evaluate limited irrigation management options for corn in a semiarid environment. Water Resources Research, 44(7), 1-12. https://doi.org/10.1029/2007WR006181
Steglich, E. M., Osorio, J., Doro, L., Jeong, J. y Williams, J. R. (2018). Agricultural Policy Environmental Extender Model-User’s Manual Version 1501. Blackland Research and Extension Center.
Tito-Velarde, C. y Wanderley, F. (2021). Contribución de la agricultura familiar campesina e indígena a la producción y consumo de alimentos en Bolivia. Cuadernos de Investigación, N° 91, CIPCA.
Torrico, J. C. (2018). Vulnerabilidad y opciones de adaptación del cultivo papa (Solanum tuberosum L.) al cambio climático para condiciones de altiplano. CienciAgro, 1, 1–14.
Wang, X., Kemanian, A. R. y Williams, J. R. (2015). Special Features of the EPIC and APEX Modeling Package and Procedures for Parameterization, Calibration, Validation, and Applications. En Laj R. Ahuja y Liwang Ma (eds.), Methods of Introducing System Models into Agricultural Research, Volume 2, pp. 177-208. https://doi.org/10.2134/advagricsystmodel2.c6
Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J. y Kiniry, J. R. (2012). EPIC and APEX: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1447-1462. https://doi.org/10.13031/2013.42253
Wang, X., Yen, H., Liu, Q., & Liu, J. (2014). An auto-calibration tool for the Agricultural Policy Environmental eXtender (APEX) model. Transactions of the ASABE, 57(4), 1087-1098. https://doi.org/10.13031/trans.57.10601
Wang, Xiuying y Jeong, J. (2016). APEX-CUTE 4 User Manual N° 4 (Octubre). Texas A&M Agrilife Research.
White, J. W., Hoogenboom, G., Kimball, B. A. y Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357-368. https://doi.org/10.1016/j.fcr.2011.07.001
Williams, J. R., Jones, C. A., Kiniry, J. R. y Spanel, D. A. (1989). EPIC crop growth model. Transactions of the American Society of Agricultural Engineers, 32(2), 497-511. https://doi.org/10.13031/2013.31032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Latin American Journal of Economic Development
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.