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Rational Bubbles and the S&P 
500. An empirical approach

Burbujas racionales y el S&P 500. 
Una metodología empírica

Óscar Martínez* 

Abstract

We analyze if the dynamics of the S&P500 resemble those of a rational bubble. We find 
positive evidence in this question by applying the Kalman Filter to a suitable asset pricing 
model proposed and our conclusion is robust to three different stochastic discount factors 
SDFs considered: Linear Utility, Log Utility and CRRA utility. We also find evidence of a 
relationship between the type of SDF and the size of a bubble in the S&P500 case.
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Resumen

El presente documento analiza si la evolución del S&P500 se parece a la de una burbuja 
racional. Encontramos evidencia positiva en esta interrogante a través de la aplicación del 
Filtro de Kalman a un modelo de valoración de acciones propuesto, y nuestra conclusión es 
robusta empleando tres diferentes factores estocásticos de descuento: utilidad lineal, utilidad 
logarítmica y utilidad CRRA. Encontramos también evidencia de la existencia de una relación 
entre el tipo de factor estocástico de descuento y el tamaño de la burbuja.
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1. Introduction

The US Stock Market is one of the principal financial markets in the world. It’s well represented 
by the S&P500 Index, which gives the behaviour of US stock prices in general being a leading 
indicator of the financial and economic situation in the US. For Latinamerican countries, 
the financial health of the US is important to follow since it has immediate contagion effect 
in important financial markets like Mexico, Brazil and Chile. As a matter of fact, Uribe and 
Mejía (2014) show that a bubble in US anticipates bubbles in the main emerging markets 
in Latinamerica as a contagion effect. The reason is that when a bubble bursts in developed 
financial markets like US, capital flows to emerging markets economies or commodities like 
petroleum or gold. Because of this, it is relevant for Latinamerica countries to study the bubble 
component in stock markets in US.

As shown in a simple representative agent model in Gürkaynak (2008) the stock price pt can 
be represented as:

t t tp f b= + (1)

Being ft the fundamental component and bt the bubble component. The latter can be 
thought as a pyramid scheme, it is reasonable to invest in it as long as it is expected that other 
people will also invest in it. In the case of stocks, ft is mainly driven by dividends dt and we see 
in Figure 1 that there has been a decoupling from prices and dividends in the last 20 years. 
Diba and Grossman (1988) conclude that for the non-existence of a bubble in stock prices 
both series should co-move or be cointegrated if they have a unit root. With a sample that 
goes until early 90s, they reject the presence of a bubble in stock prices but it is clear from 
Figure 1 that the important divergence starts just before 2000. Therefore, we might have some 
scepticism against the conclusion of Diba and Grossman (1988).
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Figure 1: Evolution of S&P500 Levels and Dividends. Year 1871 = 100

Source: Own elaboration.

We can go one step further and ask if bt has become almost the main driving force behind 
stock the S&P500 behaviour. We can start by assuming that the S&P500 follows the dynamics 
of a rational bubble.
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This is a non-arbitrage condition for a rational bubble and rt is the risk-free interest rate. 
We can rewrite equation 2 as:

( )1 11t t t tp r p u+ += + + (3)
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In equation 3, if it is true that a rational bubble explains the dynamics of S&P500 then 

1tu + , should be stationary. If 1tp +  and ( )1 t tr p+  have a unit root then they should be 
cointegrated in order to verify this rational bubble equation. We check this claim empirically1.

In Table 1 we verify that both 1tp +  and ( )1 t tr p+  have a unit root2. Additionally, we 
check that 1tu +  is stationary, which confirms the hypothesis that 1tp +  and ( )1 t tr p+  are 
cointegrated and the rational bubble equation is verified.

Table 1 
Sims Unit Root Test for 1tp + , ( )1 t tr p+  and 1tu +

Variable t2 Critical Unit Root

1tp + 0.13 13.46 Yes

( )1 t tr p+ 0.13 13.46 Yes

1tu + 511 6.63 No

Source: Own elaboration.

In Figure 2, we plot the observed levels of the S&P500 with the theoretical levels from the 
rational bubble postulated in equation 3. We can see both series co-move.

One possible caveat of the previous analysis is that by using monthly data, information is 
rapidly incorporated in prices the shorter the period of analysis is. Thus, we repeat the analysis 
by using yearly data to avoid the fast incorporation of information into prices. Figure 3 shows 
the results:

1 We use monthly data from January 1959 to April 2020 for S&P500 levels that is in Robert Shiller web page. Additionally, 
we obtain the risk-free rate (1-month T-Bill Rate) from Kenneth French web page. We express the variables in real 
terms.

2 We use the Bayesian Unit Root Test proposed by Sims (1988). We use a prior probability that the process has a unit 
root of 0.5.Aa = dditionally, the critical value was computed for large samples.
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Figure 2: Observed and Theoretical Monthly Levels of S&P500

Source: Own elaboration.

Figure 3: Observed and Theoretical Yearly Levels of S&P500

Source: Own elaboration.

The difference between the observed levels of the S&P500 and the theoretical ones can 
be clearly spotted. However, it is still true that a great portion of the dynamics of S&P500 is 
explained by the dynamics of a rational bubble. This again rises the doubt of imposing the 
restriction of 0tb =  in asset pricing models for stocks, in this particular case for the S&P500.

Most of the empirical literature of bubbles has focused in developing econometric tests for 
assessing the validity of 0tb ≠ . This is summarized in Gürkaynak (2008). The contributions 
can be divided in four streams:
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1. Variance Bound Test. In this literature, a linear utility function is assumed so the usual 
present value model for stock prices holds. The conclusion of this literature is that the 
theoretical variance of stock prices under the present value model is bigger than the 
variance of observed stock prices. If this is not the case, an argument in favour of the 
existence of the bubble component rises. The main critic is that there might not be a 
bubble in stock prices but the present value model could not be the correct one.

2. Specification Test of West. This is the first specific test for a bubble since it has in the 
alternative hypothesis that a bubble is present in stock prices. It assumes linear utility as well 
to model the fundamental component of the stock price. Two elements are used for this: 
the main asset pricing equation through the known Euler equation and an autoregressive 
process for the dividends. The second element is a regression of stock prices on dividends. 
If the set of parameters is equal statistically in these two approaches; then there is evidence 
of no bubble; whereas the opposite points out to the existence of a rational bubble in the 
data. The main contribution of this test is to isolate the modeling of the fundamental from 
the existence of a bubble.

3. Unit Root and Cointegration Tests. Diba and Grossman (1988) pointed out that if stock 
prices and dividends are unit root processes then they should co-move or be cointegrated 
in order to discard the presence of a bubble. With a sample until late 90s, they reject the 
existence of a bubble in stock prices. However, Evans (1991) pointed out that the use 
of traditional unit root and cointegration tests can reject the presence of periodically 
explosive bubbles in the data. To overcome this pitfall, Norden (1996) uses regime 
switching models to account for periodically explosive bubbles. More recently, Phillips et 
al. (2011) developed a test for mildly explosive processes and applied it to the detection 
of bubbles. They show that their procedure is robust to the Evans (1991) critique. Finally, 
in Latinamerica Uribe and Mejía (2014) use the sign test for random walks developed by 
So and Shin (2001) as a bubble test and they argue that it is robust to the Evans (1991) 
critique.

4. Bubbles as Non-observables. These are not bubble tests since they assume that a bubble is 
present in stock prices but they develop procedures for estimating the bubble component. 
The pioneer is Wu (1997) who applies the Kalman Filter to the linear utility model of 
stock prices and retrieves the bubble component. This paper is in this section of the 
literature since we also use the Kalman Filter to extract the bubble component, the main 
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difference with Wu (1997) is that we use a more general asset pricing model for stocks 
that includes a borrowing constraint and we consider three different utility functions: 
linear, logarithmic and CRRA.

The main issue with this early empirical literature is that we are dealing with two unobserved 
components: ft and bt. Thus the acceptance or rejection of 0tb ≠  by this early tests can be 
a byproduct of a incomplete model for ft. In other words, some authors refuted the existence 
of bubbles in the stock market by specifying a more complex model for ft; nevertheless, given 
the behaviour of dividends in the last 20 years, it is hard to adjust a complex model that closes 
the gap between stock prices and dividends.

This paper is not intended as a proposal for an alternative econometric method 
to asses whether 0tb ≠  or not. Given the empirical evidence showed in this 
introduction we consider that bt cannot be neglected. The issue is how important its 
role is. For this, we apply the method used in Wu (1997) through the Kalman Filter to 
a simple asset price model with borrowing constraints and with the characteristic of 
considering different utility functions that derive in different stochastic discount factors. 
We find robust evidence that the bt component has similar dynamics to the observed S&P500 
independent of the stochastic discount factor considered. Thus, a rational bubble model for 
the S&P500 might seem a suitable one.

Section 2 develops the theoretical model. Section 3 shows the empirical results and 
Section 4 concludes.

2. Model

Time is discrete and runs from 0,...,t = ∞ . There are two cohorts of investors in an 
economy: young and old. Following Martin and Ventura (2016), investors only focus on 
consumption when they are old. When young, they receive an endowment et and borrow 
from financial markets an amount bt. Borrowing is restricted in this economy and a borrowing 
constraint is imposed. Young investors can use these funds received in youth to buy a stock at 
price pt. This stock gives them, when old, funds from the gain or loss of value for prices 1tp +  
and a dividend dt already known a time t. The funds received when old are used to repay the 
debt and to consume 1tc + .
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The borrowing constraint plays a crucial role in this model. The parameter φ measures the 
degree of development of the financial markets. The lower the φ, the more difficult to borrow 
in this economy and the more important role of stock prices to help increase borrowing. This 
element of the model allows that in equilibrium stock prices not only have a fundamental 
value from the dividend stream they have but also an additional value for the relaxing of the 
borrowing constraint. This ensures that a bubble is sustained in equilibrium. It is not the 
purpose of the paper to show this but we need this enviroment in order to have a bubble in 
stock prices. Finally, the utility function fulfills the usual Inada conditions. The model is:
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The FOCs for this problem are3:
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( ) ( ) ( )1' 1 't t t t tE u c r u cµ b + = + −  (6)

where μt is the lagrange multiplier from the borrowing constraint. We can define the stochastic 
discount factor SDF as:
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3 The borrowing constraint binds in equilibrium.
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Thus the pricing equation would be:

( )1 1t t t t tp E m p d+ + = +  (8)

To ease the analysis we apply the Taylor approximation of order one to the term 
( )1 1t t tm p d+ + + 4 around the median of 1tp +  which we call p , the median of 1tm +  

which we call m  and finally the median of dt called d . The expression in equation 8 can 
be rewritten as:

( ) ( ) [ ] [ ]1 1t t t t t tp md d d E mm p p Em p+ += − + + + + (9)

Forward updating equation 9 we obtain:
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The last term of equation 10 is the bubble term bt
5 which follows the dynamics:

[ ]1
1

t t tE b b
m+ = (11)

Equation 11 represents the non-arbitrage condition for the rational bubble of the model we 
specified at the beginning of the section. This will be estimated by the Kalman Filter but there 
is an important restriction that 0tb >=  because of free-disposal. To avoid complications in 
the application of the Kalman Filter to equation 10 since we will have to impose the restriction 
of non-negativity of the bubble term, we take the model in first differences as an input. In this 

4 It is not necessary to go beyond the Taylor approximation of order 1 since higher derivatives ( )1 1t t tm p d+ + +   
are 0.

5 We also called bt the borrowing the young investor gets from financial markets. This is an abuse of notation but it 
is worth clarifying it.
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case, we do not need to impose any restriction. The final model to be used in the estimation 
for the bubble for the S&P500 will be:

( ) ( ) ( )1
1 1 1 1

0 0

j j
t t t j t t j t t j t t j t

j j

m pp E d E d d E E mm m b
∞ ∞

+
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= =

       ∆ = − + + − + ∆       ∑ ∑ (12)

3. Results

Before starting the analysis, it is worth mentioning the source of the data. Stock prices (levels 
of the S&P500), dividends and Consumer Price Index (CPI) came from the personal web 
page of Robert Shiller. The risk-free rate came from the Kenneth French web page where he 
published about the Fama-French factors. The risk-free rate is the interest rate in the 1-month 
T-Bill. Finally, the consumption data is the Personal Consumption Expenditures in billions of 
dollars from the web page of the Federal Reserve Bank of St. Louis. All data is monthly from 
January 1960 to February 2020. The data was expressed in real terms using the base CPI as of 
February 2020.

3.1. Linear Utility Model

For the Linear Utility Model (LUM) we specify the following utility function:

( )t tu c c= (13)

We start the analysis with the stock price equation derived in equation 12. Unfortunately, 
this is a complicated equation to put it directly into the Kalman Filter. We need to simplify it in 
some way. To do this, we need to find first the ARIMA order6 of the dividend process dt and 
for the SDF component mt. In case of this last variable, we use reasonable values of the degree 
of impatience b = 0.95 and the development of financial markets φ = 0.5. Table 2 shows 
the results.

6 We only consider here the autoregressive component and the integrated one as done in Wu (1997). To find out 
about the order of integration we apply the Bayesian Unit Root Test of  Sims (1988)
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Table 2 
ARIMA models for dt and mt

Variable Model

dt ARIMA(4, 1, 0)

mt ARIMA(3, 0, 0)

Source: Own elaboration.

Taking into account these results, the main asset pricing equation of the LU model is7:
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Along with equation 14, we should consider into the measurement system both equations 
of the dynamics of dt and mt which are:

( )
2 2 2 2 2

1 1 2 1 3 2 4 3 1, 1t t t t t td d d d d ea a a a+ − − − +∆ = ∆ + ∆ + ∆ + ∆ + (15)

( )1 1 2 1 3 2 2, 1t t t t tm m m m eψ ψ ψ+ − − +∆ = ∆ + ∆ + ∆ + (16)

Finally, in order to apply the Kalman Filter we need the state equation that corresponds to 
the bubble dynamics:

7 There is a detailed derivation of this simplified form in Appendix A.
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1 1
1

t t tb b w
m+ +∆ = ∆ + (17)

Before starting the Kalman Filter, we should consider the initial forecasted value for the 
estimated bubble 1|0b∆  . We attach to the idea exposed in Santos and Woodford (1997) 
and Diba and Grossman (1988) that the bubble started at the same time of the stock. Thus 
the bubble is always present. We consider that the beginning of the bubble is the start of our 
sample which is January 1960. Therefore, the initial value for the Kalman Filter should be 

1|0 0b∆ = 8.

We wait for a later subsection of the results to show the coefficients estimated. In Figure 4 
we plot the results of the estimated bubble considering a linear utility model and the levels of 
the S&P500. Remember that in the Kalman Filter applied we estimated tb∆   so to construct 

tb  we need an initial value for the bubble. We can peek any positive value (the bubble is non-
negative because of free-disposal) and construct the bubble with the estimated tb∆  . This 
leaves us with multiple bubbles to be considered and that is a characteristic of models with 
bubbles: they have multiple equilibria. Finally, the presented results are the smoothed values 
of the estimated bubble.

To begin with, at the left plot of Figure 4, we consider an initial value of 1 1b =  and we 
clearly see that the dynamics of the estimated bubble are very similar to the dynamics of the 
observed levels of the S&P500. We can look this more clearly by choosing an initial value of 
the bubble 1b  equal to the level of the S&P500 in January 1960, and we see in the middle plot 
of Figure 4, that both series are very much the same. Finally, in the right plot of Figure 4, we do 
a scatterplot of the levels of S&P500 and the estimated bubble with an initial value of 1 1b =

. There is a direct and strong relationship between both.

8 In the case of the MSE for the estimated bubble we consider a lot of uncertainty with an initial value of 1|0 100P = .
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Figure 4: Observed S&P500 Levels and Estimated Linear Utility Bubble

Source: Own elaboration.

Now we repeat this procedure with the log utility and the CRRA utility case and see if the 
results are similar.

3.2. Logarithmic Utility

We consider an utility function in the form:

( ) ( )logt tu c c= (18)

To begin the analysis we need to determine the ARIMA order of 1
t tg c−=  in order to 

estimate [ ]1t tE g +  that belongs to the Lagrange multiplier μt in equation 6. Table 3 shows 
the result.

Table 3 
ARIMA models for gt

Variable Model

gt ARIMA(8, 1, 0)

Source: Own elaboration.

With this result, [ ]1t tE g +  can be computed as follows:

[ ]
8

1 1
1

t t t j t j
j

E g g gρ+ + −
=

= + ∆∑ (19)
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Now we can estimate the SDF mt (taking into account reasonable values of b = 0.95 
and the degree of financial openness φ = 0.5) and find its ARIMA order. In the case of the 
dividends dt, we use the results showed in Table 2. Table 4 shows the results for mt.

Table 4 
ARIMA models for mt.

Variable Model

mt ARIMA(8, 0, 0)

Source: Own elaboration.

With this information we are in the position to derive the main asset pricing equation of 
the Logarithmic Utility Model along with the dynamics of dividends and the SDF. We do 
not show the equations because they are similar in essence to the ones derived for the Linear 
Utility Model (equations 14 to 15) and we additionally use the bubble dynamics equation 
(Equation 17).

As discussed in the Linear Utility results, we consider an initial value for the forecasted 

1|0 0b∆ = 9. The results presented are the smoothed values of the estimated bubble. In Figure 
5, we present the estimated bubble under the Log Utility function and compare it to the 
observed levels of the S&P500. As mentioned in the Linear Utility case, we need to define 
an initial value for the bubble since we estimated |t tb∆  . This initial value has to be positive 
since bubbles are positive because of free disposal. On the graph of the left, with an initial 
value of 1|1 1b = , we compare the dynamics of the estimated bubble with the observed levels 
of the S&P500. We can notice that the dynamics of both series are alike. To highlight this, 
in the middle graph of Figure 5, we define an initial bubble level 1|1b  equal to the observed 
level of the S&P500 in January 1960. We see that the estimated bubble follows closely the 
observed levels of the S&P500. Finally, the graph on the right confirms the direct and strong 
relationship between the estimated bubble and the observed levels of the S&P500.

9 A lot of uncertainty was also considered initially on the estimates from the Kalman Filter thus the value for the initial 
forecasted state was 1|0 100P = .
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Figure 5: Observed S&P500 Levels and Estimated Log Utility Bubble

Source: Own elaboration.

So far, the results are similar for the Linear Utility bubble and the Log Utility bubble. We 
now consider the case of a CRRA Utility function.

3.3. CRRA Utility

In this section, we consider an utility function in the form:

( )
1 1 1
1
t

t
cu c

g

g
g

− −
= >

−
(20)

We define t tg c g−=  and adopt a reasonable relative risk aversion coefficient g = 3. As 
we did with the Logarithmic Utility case, we need to compute [ ]1t tE g +  in order to estimate 
the Lagrange multiplier μt of equation 6 and ultimately the SDF mt. We present the ARIMA 
order of gt and mt in Table 5.

Table 5 
ARIMA models for gt and mt.

Variable Model

gt ARIMA(7, 1, 0)

gt ARIMA(8, 0, 0)

Source: Own elaboration.
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With this information, we can derive the main asset pricing equation and the dynamics of 
dt and mt. Because these equations are similar in essence to equations 14 to 16 but longer in 
extension we omit them here. Bubble dynamics are considered for the state equation in the 
Kalman Filter as is showed in equation 17. 

As done in previous analysis, we initialize the forecasted state 1|0 0b∆ =  and give a big 
initial MSE to it 1|0 100P = . In Figure 6, we display the results. We mentioned that we can 
have multiple estimated bubbles tb  depending on the initial value but the dynamics are 
similar and they resemble the dynamics of the Observed S&P500. We can see this point in the 
graph of the left and middle of Figure 6. In the first case, we chose an initial value 1 1b =  and 
in the second we chose an initial value equal to the observed level of the S&P500 for January 
1960. We clearly see that the series dynamics resemble each other, and this result is confirmed 
by the scatterplot of the right which shows a direct relationship between the observed levels of 
the S&P500 and the estimated bubble.

Figure 6: Observed S&P500 Levels and Estimated CRRA Utility Bubble

Source: Own elaboration.

So far, the results of the three models are similar but it is useful to contrast them. We do 
this in the next subsection.

3.4. Results comparison

To begin with, we compare the estimated coefficients across the three models. Table 6 shows 
the results. We see that the estimations are kind of robust across the three models and almost 
all the coefficients are significative at 5% level. Finally, as we move across the models from 
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linear to CRRA, the estimated volatility of the bubble increases and in the three models is 
significative.

Table 6 
Estimated coefficients and standard errors

Variable Coeff.LU SE.LU Coeff.Log SE.Log Coeff.
CRRA SE.CRRA

a1 -0.19326 0.03721 -0.18881 0.03789 -0.18555 0.03798

a2 -0.18264 0.03651 -0.20005 0.03712 -0.19921 0.03736

a3 -0.23039 0.03626 -0.22606 0.03707 -0.22269 0.03708

a4 -0.07171 0.03668 -0.08713 0.03689 -0.08583 0.03722

ψ1 -0.00027 0.00005 -0.00147 0.00005 -0.00147 0.00005

ψ2 -0.00019 0.00005 -0.00131 0.00007 -0.00137 0.00007

ψ3 0.00003 0.00005 -0.00114 0.00008 -0.00121 0.00009

ψ4 NA NA -0.00102 0.00009 -0.00109 0.00009

ψ5 NA NA -0.00088 0.00009 -0.00096 0.00009

ψ6 NA NA -0.00064 0.00008 -0.00066 0.00008

ψ7 NA NA -0.00033 0.00007 -0.00025 0.00007

ψ8 NA NA -0.00009 0.00005 -0.00006 0.00005

σd 0.01117 0.00059 0.01111 0.00059 0.01105 0.00058

σm 0.00000 0.00000 0.00003 0.00000 0.00024 0.00001

σb 10.49812 0.55071 11.65861 0.61953 13.78634 0.72906

Source: Own elaboration.

We plot the three estimated bubbles tb  and also the three estimated fundamentals tf  
and see how they behave for the different SDF mt. As we mentioned earlier, we need an initial 
value for the estimated bubble tb  and an initial value for the estimated fundamental tf  since 
we only estimated |t tb∆   and tf∆ . We consider conservative initial values of 1 1b =  and 

1 1f =  and constructed the series. We are interested in the dynamics, not the levels per se.

We show the results in Figure 7. The three estimated bubbles are at the top left in the first 
plot and it looks like there are no differences among them. However, digging up closely, we 
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consider the difference between the estimates of the CRRA Utility Bubble and the Log Utility 
Bubble. This is depicted in the middle graph of the top. We see that across all dates the CRRA 
utility bubble is bigger than the Log Utility Bubble. Finally, in the topright graph, we plot the 
difference between the Log Utility Bubble and the Linear Utility Bubble. At the beginning 
the difference is negible, but at later periods starting from 2000 the Log Utility Bubble turns 
bigger than the Linear Utility Bubble.

We plot the three estimated fundamentals at the bottomleft graph and it is more clear 
that the CRRA Utility Fundamental is the lowest, especially from 2010 onwards, being in the 
middle the Log Utility Fundamental and finally the at the top the Linear Utility Fundamental. 
This is confirmed in the last two graphs at the bottom. In the first one, we plot the difference 
between the CRRA Utility Fundamental and the Log Utility Fundamental which turns out to 
be negative for the whole sample period. The same is true for the difference between the Log 
Utility Fundamental and the Linear Utility Fundamental plotted in the bottomright panel.

Figure 7: Estimated Bubbles and Fundamentals: a comparison

Source: Own elaboration.

Thus we have the result that the bigger the fundamental value the lower the bubble. 
In our model two variables drive fundamental value: dividends dt and the SDF mt. 
According to our results shown in Table 6, it looks like empirically, the dynamics of the 
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fundamental are explained by dividends, and the size of the fundamental is determined by 
the interaction between the dividends and the SDF. This is through the median of the SDF 
we considered in the analysis m . For the Linear Utility Model 0.93LUm = , for the Log 
Utility Model 0.92Logm =  and finally for the CRRA utility model 0.90CRRAm = ,  
thus the lower the SDF the lower the fundamental value and the higher the bubble. 
In fact, we are not the first to arrive this conclusion.  Galí (2014) shows rigorously that a 
leaning against the wind Monetary Policy is not favorable if one looks to reduce a bubble. Let 
us consider this in a model with linear utility and no borrowing constraint. Thus, 1

1t
t

m
r

=
+

. If 
the Central Bank increases rt then mt decreases and the fundamental value decreases leaving 
room for a bigger bubble. This is confirmed by  the results obtained in this analysis and it 
is at odds with conventional wisdom that increasing interest rates helps reduce a bubble. 
Given the important role of the SDF in the size of the bubble estimated for the S&P500, we 
analyze the validity of our main asset pricing equation 8 considering the three different types 
of SDFs analyzed. Figure 8 shows that the three different SDFs considered price reasonably 
well the S&P500.

Figure 8: Comparison of SDFs considered

Source: Own elaboration.

This is an important result because given the fact that we assumed constant parameters for 
impatience b = 0.95, financial openness φ = 0.5, and risk aversion g = 3; the resulting 
SDFs price reasonably well the S&P500.
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Finally, it is worth digging up a bit further into the degree of financial openness. We 
gave a reasonable value for the computations of φ = 0.5 but we can analyze what would 
happen if we are in an economy with a restrictive borrowing constraint, i.e., φ = 0.5. For 
the Linear Utility 0.95LUm = , for the Log Utility 0.94Logm =  and for the CRRA 
Utility 0.92CRRAm = . Thus we would expect higher fundamental values in the three cases 
compared to the initial case of φ = 0.5 and reduced bubble sizes10. Therefore, it would seem 
that putting restrictions to credit can help reduce a bubble. At least in the case of the S&P500.

4. Conclusions

We went deep into questioning the relationship between Rational Bubbles and the S&P500. 
The evidence suggests that the dynamics of the S&P500 resembles one of a rational 
bubble and this conclusion is robust to the different SDFs considered. This is important 
for institutional investors and pension funds who invest in the stock market since they 
can use the rational bubble equation to forecast the expected returns when considering 
strategic allocations. For Central Banks, it gives the message that the stock market is 
driven by animal spirits and fundamental components are not that crucial in this market. 
The fundamental component of the S&P500 is mainly driven by dividends dt and 
the median of the SDF m . Particularly, the dividends series give the dinamycs of the 
fundamental value but ultimately m  defines the size. Thus a lower SDF results in a 
bigger bubble. Among our estimates, the CRRA utility SDF gives the biggest bubble. 
Finally, we briefly analyzed the impact of the borrowing restrictions on the size of a bubble in 
the S&P500 case and we concluded that being restrictive in credit reduces the size of a bubble. 
This is another important result for Central Banks and Financial Authorities, they can restrict 
borrowing from stock market investors if a considerable bubble size is perceived.

Fecha de recepción: 18 de enero de 2021 
Fecha de aceptación: 9 de abril de 2021 
Manejado por ABCE/SEBOL/IISEC

10 We do not do this computation since we think the relationship between the SDF and bubble size has been already 
exposed.
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Annex

Derivation of Linear Utility Asset Pricing Equation

In this appendix we will derive the equation 14. To begin with, we found out that dividends dt 
follow a process ARIMA(4, 1, 0) i.e.

1 1 2 2 3 3 4 4t t t t t td d d d d ua a a a− − − −∆ = ∆ + ∆ + ∆ + ∆ + (21)

We can rewrite 21 as an AR(1) process:



1

11 2 3 4

1 2

2 3

3 4

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

tt t

t t t

t t

t t

t t

UAY Y

d d u
d d
d d
d d

a a a a

−

−

− −

− −

− −

∆ ∆      
      ∆ ∆      = +
      ∆ ∆
      ∆ ∆      

 

(22)

Updating 22 one period we have:

1 1t t tY AY U+ += + (23)

Forward updating equation 23 until period t j+ :

1

0

j
j i

t j t t j i
i

Y A Y A U
−

+ + −
=

= + ∑ (24)

Multiplying 24 by the vector (1x4) [ ]1,0,0,0J =  and applying the [ ]tE  operator, we 
have:
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1

1
2

1

j
t t j t t j t

j j
t t j t t j t t

j
i

t t j t t
i

E d E d JA Y

E d E d JA Y JA Y

E d d J A Y

+ + −

−
+ + −

+
=

   = +   
   = + +   

 
  = +   

 
∑



(25)

Thus:

( ) ( )1 j
t t j t tE d d I A A I A Y−

+  = + − −  (26)

In the same way, we can start at 1t t tY AY U−= +  to arrive to:

( ) ( )1
1 1 1 1

j
t t j t tE d d I A A I A Y−
− + − − −  = + − −  (27)

Therefore:

( ) ( )1
1 1

j
t t j t t j t tE d E d d I A A I A Y−

+ − + −   − = ∆ + − − ∆    (28)

Similarly, an ARIMA(3, 0, 0) process was found for mt. We can rewrite it as an AR(1) process:

 

1

1 2 3 1

1 2

2 3

0 1 0 0 0
0 0 1 0 0

tt t

t t t

t t

t t

C VX B X

m c m v
m m
m m

ψ ψ ψ

−

−

− −

− −

         
         
         
                 

= + +


 

(29)

Starting with equation 29 and repeating the process we did for dt considering a vector (1x3) 
[ ]1,0,0K = , we obtain:
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1 1
j

t t j t t j tE m E m KBB X+ + − +   − = ∆    (30)

Substituing 29and 30 into the price equation 12, we have:

( ) ( ) ( ) ( )1 1 11
1 1t t t t tp d J I A A I I A Y d KB I B Xm m m p m

m m
b− − − ∆ = ∆ + − − − ∆ + + − ∆ + ∆ − − 

(31)

It is a matter of algebra to arrive from equation 30 to equation 14.


